Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 913
Filtrar
1.
Nutrients ; 16(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542678

RESUMO

This study aimed to characterize the composition of lipids in the red blood cells (RBCs) of adolescent swimmers and correlate this lipidome with the aerobic performance of the athletes. Five experimental assessments were performed by 37 adolescent swimmers. During the first session, the athletes went to the laboratory facility for venous blood sampling. The critical velocity protocol was conducted over the 4 subsequent days to measure aerobic performance (CV), comprising maximal efforts over distances of 100, 200, 400, and 800 m in a swimming pool. RBCs were obtained and extracted for analysis using the liquid chromatography-high resolution mass spectrometry untargeted approach. A total of 2146 ions were detected in the RBCs, of which 119 were identified. The enrichment pathway analysis indicated intermediary lipids in the glycerophospholipid, glycerolipid, sphingolipid, linoleic acid, and alpha-linolenic metabolisms, as well as pentose and glucuronate interconversions. A significant impact of the intermediary lipids was observed for the glycerophospholipid metabolism, including phosphatidylethanolamine (PE), phosphatidylcholine (PC), 1-acyl-sn-glycero-3-phosphocholine, sn-glycerol 3-phosphate, and phosphatidic acid. Inverse and significant associations were observed for PE 18:2/18:3 (r = -0.39; p = 0.015), PC 18:3/20:0 (r = -0.33; p = 0.041), and phosphatidic acid 18:0/0:0 (r = -0.47; p = 0.003) with aerobic performance. Swimmers who exhibited higher levels of aerobic performance also had the lowest abundance of PE, PC, and phosphatidic acid.


Assuntos
Glicerofosfolipídeos , Fosfatidilcolinas , Adolescente , Humanos , Ácidos Fosfatídicos , Glicerilfosforilcolina , Eritrócitos
2.
Langmuir ; 40(13): 6878-6883, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501274

RESUMO

Certain odors have been shown not only to cause health problems and stress but also to affect skin barrier function. Therefore, it is important to understand olfactory masking to develop effective fragrances to mask malodors. However, olfaction and olfactory masking mechanisms are not yet fully understood. To understand the mechanism of the masking effect that has been studied, the responses of several target substance (TS) molecules-1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) mixed molecular layers to odorant (OD) molecules were examined as a simple experimental model of epithelial cellular membranes injured by TS molecules. Here, we examined trans-2-nonenal, 1-nonanal, trans-2-decenal, and 1-decanal as TS molecules to clarify the effects of double bonds and hydrocarbon chain lengths on the phospholipid molecular layer. In addition, benzaldehyde and cyclohexanecarboxaldehyde were utilized as OD molecules to clarify the masking effect of the aromatic ring. Surface pressure (Π)-area (A) isotherms were measured to clarify the adsorption or desorption of TS and OD molecules on the DOPC molecular layer. In addition, Fourier transform infrared spectroscopy was performed to clarify the interactions among DOPC, TS, and OD molecules. We found that TS molecules with and without double bonds had different effects on the DOPC molecular layer and that molecules with shorter chain lengths had greater effects on the DOPC molecular layer. Furthermore, OD molecules with aromatic rings counteracted the effects of the TS molecules. On the basis of this research, not only a detailed mechanism by which odor molecules affect lipid membranes without mediating olfactory receptors is elucidated but also more effective OD molecules with masking effects are proposed.


Assuntos
Bicamadas Lipídicas , Fosfatidilcolinas , Estrutura Molecular , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Fosfolipídeos/química , Glicerilfosforilcolina
3.
Ital J Pediatr ; 50(1): 52, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486257

RESUMO

BACKGROUND: Orthostatic intolerance, which includes vasovagal syncope and postural orthostatic tachycardia syndrome, is common in children and adolescents. Elevated plasma homocysteine levels might participate in the pathogenesis of orthostatic intolerance. This study was designed to analyze the plasma metabolomic profile in orthostatic intolerance children with high levels of plasma homocysteine. METHODS: Plasma samples from 34 orthostatic intolerance children with a plasma homocysteine concentration > 9 µmol/L and 10 healthy children were subjected to ultra-high-pressure liquid chromatography and quadrupole-time-of-flight mass spectrometry analysis. RESULTS: A total of 875 metabolites were identified, 105 of which were significantly differential metabolites. Choline, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine, 1-(1Z-octadecenyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine, histidine, isocitric acid, and DL-glutamic acid and its downstream metabolites were upregulated, whereas 1-palmitoyl-sn-glycero-3-phosphocholine, 1-stearoyl-sn-glycerol 3-phosphocholine, sphingomyelin (d18:1/18:0), betaine aldehyde, hydroxyproline, and gamma-aminobutyric acid were downregulated in the orthostatic intolerance group compared with the control group. All these metabolites were related to choline and glutamate. Heatmap analysis demonstrated a common metabolic pattern of higher choline, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine, and DL-glutamic acid, and lower sphingomyelin (d18:1/18:0), 1-stearoyl-sn-glycerol 3-phosphocholine, and 1-palmitoyl-sn-glycero-3-phosphocholine in patients with certain notable metabolic changes (the special group) than in the other patients (the common group). The maximum upright heart rate, the change in heart rate from the supine to the upright position, and the rate of change in heart rate from the supine to the upright position of vasovagal syncope patients were significantly higher in the special group than in the common group (P < 0.05). Choline, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine, and DL-glutamic acid were positively correlated with the rate of change in heart rate from the supine to the upright position in vasovagal syncope patients (P < 0.05). CONCLUSIONS: The levels of choline-related metabolites and glutamate-related metabolites changed significantly in orthostatic intolerance children with high levels of plasma homocysteine, and these changes were associated with the severity of illness. These results provided new light on the pathogenesis of orthostatic intolerance.


Assuntos
Glicerol/análogos & derivados , Intolerância Ortostática , Fosforilcolina/análogos & derivados , Síncope Vasovagal , Adolescente , Criança , Humanos , Ácido Glutâmico , Glicerilfosforilcolina , Esfingomielinas , Colina , Homocisteína
4.
Cells ; 13(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38391922

RESUMO

Alzheimer's disease (AD), marked by cognitive impairment, predominantly affects the brain regions regulated by cholinergic innervation, such as the cerebral cortex and hippocampus. Cholinergic dysfunction, a key contributor to age-related cognitive decline, has spurred investigations into potential therapeutic interventions. We have previously shown that choline alphoscerate (α-GPC), a cholinergic neurotransmission-enhancing agent, protects from Aß-mediated neurotoxicity. Herein, we investigated the effects of α-GPC on the microglial phenotype in response to Aß via modulation of the nicotinic alpha-7 acetylcholine receptor (α7 nAChR). BV2 microglial cells were pre-treated for 1 h with α-GPC and were treated for 24, 48, and 72 h with Aß1-42 and/or α-BTX, a selective α7nAchR antagonist. Fluorescent immunocytochemistry and Western blot analysis showed that α-GPC was able to antagonize Aß-induced inflammatory effects. Of note, α-GPC exerted its anti-inflammatory effect by directly activating the α7nAChR receptor, as suggested by the induction of an increase in [Ca2+]i and Ach-like currents. Considering that cholinergic transmission appears crucial in regulating the inflammatory profiles of glial cells, its modulation emerges as a potential pharmaco-therapeutic target to improve outcomes in inflammatory neurodegenerative disorders, such as AD.


Assuntos
Doença de Alzheimer , Receptores Nicotínicos , Humanos , Doença de Alzheimer/tratamento farmacológico , Microglia/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Glicerilfosforilcolina/farmacologia , Peptídeos beta-Amiloides/metabolismo , Receptores Nicotínicos/metabolismo , Transmissão Sináptica , Colinérgicos
5.
J Pharm Biomed Anal ; 241: 115998, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330784

RESUMO

L-α-glyceryl phosphorylcholine, also referred to as choline ethanol phosphate and phosphocholine glycerophosphate, is a naturally occurring metabolite of water-soluble phospholipids in animals. This molecular property is important for informing the crystallization and purification of drugs. The solubility of L-α-glyceryl phosphorylcholine was determined in ten pure solvents and three mixed solvents under atmospheric pressure. The experimental results indicate that L-α-glyceryl phosphorylcholine is most soluble in methanol and least soluble in acetone. Additionally, the solubility of L-α-glyceryl phosphorylcholine was found to increase with temperature within the experimental range. Furthermore, the solubility of L-α-glyceryl phosphorylcholine in binary solvents is dependent on the proportion of positive solvent and temperature. The solubility of L-α-glyceryl phosphorylcholine increases with the proportion of positive solvent. XRD and DSC results indicate that the crystal form of L-α-glyceryl phosphorylcholine remains unchanged before and after dissolution in the reagent, and its melting point temperature is 413.15 K. Various models, including the modified Apelblat model, λh model, Jouyban-Acree model, SUN model, and CNIBS/R-K model, were used to fit the solubility data of L-α-glyceryl phosphorylcholine in different solvents. The study found that the modified Apelblat model and CNIBS/R-K model were the most appropriate for fitting the data. The KAT-LSER model was used to analyze the molecular interactions between solvents and solutes, revealing that the solvent step method with non-specific polarity/polarization interaction had the greatest impact on solubility.


Assuntos
Glicerilfosforilcolina , Fosforilcolina , Solubilidade , Solventes/química , Termodinâmica , Água/química
6.
Eur J Nutr ; 63(3): 785-796, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38175250

RESUMO

PURPOSE: Investigate the association between choline and betaine intake and all-cause mortality in a large Swedish cohort. METHODS: Women (52,246) and men (50,485) attending the Västerbotten Intervention Programme 1990-2016 were included. Cox proportional hazard regression models adjusted for energy intake, age, BMI, smoking, education, and physical activity were used to estimate mortality risk according to betaine, total choline, phosphatidylcholine, glycerophosphocholine, phosphocholine, sphingomyelin, and free choline intakes [continuous (per 50 mg increase) and in quintiles]. RESULTS: During a median follow-up of 16 years, 3088 and 4214 deaths were registered in women and men, respectively. Total choline intake was not associated with all-cause mortality in women (HR 1.01; 95% CI 0.97, 1.06; P = 0.61) or men (HR 1.01; 95% CI 0.98, 1.04; P = 0.54). Betaine intake was associated with decreased risk of all-cause mortality in women (HR 0.95; 95% CI 0.91, 0.98; P < 0.01) but not in men. Intake of free choline was negatively associated with risk of all-cause mortality in women (HR 0.98; 95% CI 0.96, 1.00; P = 0.01). No other associations were found between intake of the different choline compounds and all-cause mortality. In women aged ≥ 55 years, phosphatidylcholine intake was positively associated with all-cause mortality. In men with higher folate intake, total choline intake was positively associated with all-cause mortality. CONCLUSION: Overall, our results do not support that intake of total choline is associated with all-cause mortality. However, some associations were modified by age and with higher folate intake dependent on sex. Higher intake of betaine was associated with lower risk of all-cause mortality in women.


Assuntos
Betaína , Colina , Masculino , Humanos , Feminino , Estudos Prospectivos , Suécia/epidemiologia , Dieta , Glicerilfosforilcolina , Ácido Fólico , Fatores de Risco
7.
Nat Aging ; 4(1): 80-94, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38238601

RESUMO

Skeletal muscle plays a central role in the regulation of systemic metabolism during lifespan. With aging, this function is perturbed, initiating multiple chronic diseases. Our knowledge of mechanisms responsible for this decline is limited. Glycerophosphocholine phosphodiesterase 1 (Gpcpd1) is a highly abundant muscle enzyme that hydrolyzes glycerophosphocholine (GPC). The physiological functions of Gpcpd1 remain largely unknown. Here we show, in mice, that the Gpcpd1-GPC metabolic pathway is perturbed in aged muscles. Further, muscle-specific, but not liver- or fat-specific, inactivation of Gpcpd1 resulted in severely impaired glucose metabolism. Western-type diets markedly worsened this condition. Mechanistically, Gpcpd1 muscle deficiency resulted in accumulation of GPC, causing an 'aged-like' transcriptomic signature and impaired insulin signaling in young Gpcpd1-deficient muscles. Finally, we report that the muscle GPC levels are markedly altered in both aged humans and patients with type 2 diabetes, displaying a high positive correlation between GPC levels and chronological age. Our findings reveal that the muscle GPCPD1-GPC metabolic pathway has an important role in the regulation of glucose homeostasis and that it is impaired during aging, which may contribute to glucose intolerance in aging.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Glicerilfosforilcolina , Fosfolipases , Idoso , Animais , Humanos , Camundongos , Envelhecimento/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Redes e Vias Metabólicas , Músculo Esquelético/metabolismo , Fosfolipases/metabolismo , Glicerilfosforilcolina/metabolismo
8.
Biophys J ; 123(4): 489-501, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38243595

RESUMO

Since the membrane fluidity controls the cellular functions, it is important to identify the factors that determine the cell membrane viscosity. Cell membranes are composed of not only lipids and proteins but also polysaccharide chain-anchored molecules, such as glycolipids. To reveal the effects of grafted polymers on the membrane fluidity, in this study, we measured the membrane viscosity of polymer-grafted giant unilamellar vesicles (GUVs), which were prepared by introducing the poly (ethylene glycol) (PEG)-anchored lipids to the ternary GUVs composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol. The membrane viscosity was obtained from the velocity field on the GUV generated by applying a point force, based on the hydrodynamic model proposed by Henle and Levine. The velocity field was visualized by a motion of the circular liquid ordered (Lo) domains formed by a phase separation. With increasing PEG density, the membrane viscosity of PEG-grafted GUVs increased gradually in the mushroom region and significantly in the brush region. We propose a hydrodynamic model that includes the excluded volume effect of PEG chains to explain the increase in membrane viscosity in the mushroom region. This work provides a basic understanding of how grafted polymers affect the membrane fluidity.


Assuntos
Fluidez de Membrana , Polímeros , Polietilenoglicóis , Lipossomas Unilamelares , Glicerilfosforilcolina , Fosfatidilcolinas , Bicamadas Lipídicas
9.
J Biol Chem ; 300(1): 105543, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072057

RESUMO

Candida albicans is a commensal fungus, opportunistic pathogen, and the most common cause of fungal infection in humans. The biosynthesis of phosphatidylcholine (PC), a major eukaryotic glycerophospholipid, occurs through two primary pathways. In Saccharomyces cerevisiae and some plants, a third PC synthesis pathway, the PC deacylation/reacylation pathway (PC-DRP), has been characterized. PC-DRP begins with the acylation of the lipid turnover product, glycerophosphocholine (GPC), by the GPC acyltransferase, Gpc1, to form Lyso-PC. Lyso-PC is then acylated by lysolipid acyltransferase, Lpt1, to produce PC. Importantly, GPC, the substrate for Gpc1, is a ubiquitous metabolite available within the host. GPC is imported by C. albicans, and deletion of the major GPC transporter, Git3, leads to decreased virulence in a murine model. Here we report that GPC can be directly acylated in C. albicans by the protein product of orf19.988, a homolog of ScGpc1. Through lipidomic studies, we show loss of Gpc1 leads to a decrease in PC levels. This decrease occurs in the absence of exogenous GPC, indicating that the impact on PC levels may be greater in the human host where GPC is available. A gpc1Δ/Δ strain exhibits several sensitivities to antifungals that target lipid metabolism. Furthermore, loss of Gpc1 results in both a hyphal growth defect in embedded conditions and a decrease in long-term cell viability. These results demonstrate for the first time the importance of Gpc1 and this alternative PC biosynthesis route (PC-DRP) to the physiology of a pathogenic fungus.


Assuntos
Aciltransferases , Animais , Humanos , Camundongos , Aciltransferases/genética , Aciltransferases/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Glicerilfosforilcolina/metabolismo , Fosfatidilcolinas/metabolismo
10.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003442

RESUMO

This study explores the hysteresis phenomenon in DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) monolayers, considering several variables, including temperature, compression and expansion rates, residence time, and subphase content. The investigation focuses on analyzing the influence of these variables on key indicators such as the π-A isotherm curve, loop area, and compression modulus. By employing the Langmuir-Blodgett technique, the findings reveal that all the examined factors significantly affect the aforementioned parameters. Notably, the hysteresis loop, representing dissipated energy, provides valuable insights into the monolayer's viscoelasticity, molecular packing, phase transition changes, and resistance during the isocycle process. These findings contribute to a comprehensive understanding of the structural and dynamic properties of DPPC monolayers, offering insights into their behavior under varying conditions. Moreover, the knowledge gained from this study can aid in the development of precise models and strategies for controlling and manipulating monolayer properties, with potential applications in drug delivery systems, surface coatings, as well as further investigation into air penetration into alveoli and the blinking mechanism.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Glicerilfosforilcolina , Propriedades de Superfície , 1,2-Dipalmitoilfosfatidilcolina/química , Temperatura
11.
Molecules ; 28(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37630243

RESUMO

Diclofenac is a non-steroidal anti-inflammatory drug (NSAID) from the group of phenylacetic acid derivatives, which has analgesic, anti-inflammatory and antipyretic properties. The interaction of non-steroidal anti-inflammatory drugs with cell membranes can affect their physicochemical properties, which, in turn, can cause a number of side effects in the use of these drugs. Electron paramagnetic resonance (EPR) spectroscopy could be used to study the interaction of diclofenac with a membrane, if its spin-labeled analogs existed. This paper describes the synthesis of spin-labeled diclofenac (diclofenac-SL), which consists of a simple sequence of transformations such as iodination, esterification, Sonogashira cross-coupling, oxidation and saponification. EPR spectra showed that diclofenac-SL binds to a lipid membrane composed of palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). 2H electron spin echo spectroscopy (ESEEM) was used to determine the position of the diclofenac-SL relative to the membrane surface. It was established that its average depth of immersion corresponds to the 5th position of the carbon atom in the lipid chain.


Assuntos
Anti-Inflamatórios não Esteroides , Diclofenaco , Marcadores de Spin , Membranas , Glicerilfosforilcolina
12.
Clin Nutr ; 42(9): 1647-1656, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37515842

RESUMO

BACKGROUND: Human breast milk is the primary source of choline and choline-containing compounds for infants at early stages of life. Choline data across lactation in Chinese human milk were limited. OBJECTIVE: This study aimed to quantify the five choline compounds in Chinese human breast milk and explore associated factors. METHODS: A total of 540 lactating mothers from the MUAI (Maternal Nutrition and Infant Investigation) study were included. The content of water-soluble choline (free choline, phosphocholine, glycerophosphocholine) and lipid-soluble choline (phosphatidylcholine, sphingomyelin) in 892 human milk samples collected from 0 to 400 days postpartum were examined, and associated factors were explored. RESULTS: Choline concentrations in human milk varied from postpartum day 0-400 (92.06 ± 65.22 to 171.01 ± 47.84 mg/L). Water-soluble choline was the major component (88.6%-93.8%) in human milk and ranged from 793.03 (659.22) to 1544.43 (443.32) µmol/L. Its trajectory followed that of total choline, increasing from colostrum to transitional milk and then declining in mature milk. In contrast, lipid-soluble choline accounted for 6.2%-11.4% over lactation and had an opposite trajectory. Choline composition varied by delivery mode and parity history. CONCLUSION: The concentrations of individual choline and choline-containing compounds during lactation in Chinese human breast milk were described for the first time. Our results address gaps in extant Chinese human milk choline data and support tailored dietary reference intakes for Chinese lactating women and infants. Our data describes the level and profile of choline from 0 to 400 days postpartum in Chinese human breast milk. This is the most updated data on choline and also the first report of water-soluble choline as the predominant type in Chinese human milk. Our results compensate for the deficiencies in data on choline in Chinese human milk. CLINICAL TRIAL REGISTRATION: Clinical Trial Registry number: ChiCTR1800015387. Web link to study on registry: https://www.chictr.org.cn/index.aspx.


Assuntos
Colina , Leite Humano , Feminino , Humanos , Lactente , Gravidez , Glicerilfosforilcolina/análise , Lactação , Leite Humano/química , Água
13.
J Membr Biol ; 256(4-6): 413-422, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37269365

RESUMO

We have studied the effect of relative composition of γ-Oryzanol (γ-Or) on the liquid expanded-liquid condensed phase coexistence region in the mixed Langmuir monolayer of γ-Or and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) molecules at air-water interface. The surface manometry studies at a fixed temperature show that the mixture of γ-Or and DPPC forms a stable monolayer at air-water interface. As the relative composition of γ-Or increases the range of area per molecule over which the coexistence of liquid expanded (LE)-liquid condensed (LC) phases exists reduces. Although the LE-LC phase coexistence corresponds to the first-order phase transition, the slope of the surface pressure-area per molecule isotherm is non-zero. Earlier studies have attributed the non-zero slope in LE-LC phase coexistence region to the influence of the strain between the ordered LC phase and disordered LE phase. The effect of strain on the coexistence of LE-LC phases can be studied in terms of molecular density-strain coupling. Our analysis of the liquid condensed-liquid expanded coexistence region in the isotherms of mixed monolayers of DPPC and γ-Or shows that with the increase in the mole fraction of sterol in the mixed monolayer the molecular lateral density-strain coupling increases. However, at 0.6 mole fraction of γ-Or in the mixed monolayer the coupling decreases. This is corroborated by the observation of minimum Gibb's free energy of the mixed monolayer at this relative composition of γ-Or indicating better packing of molecules.


Assuntos
Fenilpropionatos , Glicerilfosforilcolina , Esteróis , Água , 1,2-Dipalmitoilfosfatidilcolina , Propriedades de Superfície
14.
J Int Soc Sports Nutr ; 20(1): 2214112, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37229544

RESUMO

BACKGROUND: Nutrition plays a key role in training and athletic performance and dietary supplements can make a small, but potentially valuable, contribution to achieving peak athletic performance. This study is the first to investigate the effects of supplementation from the combination of BCAAs, L-citrulline, and A-GPC on exercise performance. METHODS: In this randomized, double-blind, crossover study 30 male trained cyclists (age: 43.7 ± 8.5 years) completed a 20 km cycling time trial (TT) test and a high intensity endurance cycling (HIEC) test following a 7-day supplementation period with either a supplement containing 8 g BCAAs, 6 g L-citrulline, and 300 mg A-GPC or a placebo (15 g maltodextrin). For each trial, mean values for time to completion, peak and average power output, OMNI rating of perceived exertion, and visual analogue scale (VAS) responses on perceived exertion were computed for the 20 km TT test. Mean values for time to fatigue and VAS responses on perceived exertion were computed for the HIEC test. Procedures for dietary intake and exercise patterns were implemented to achieve consistency throughout the study period. RESULTS: There was a significant increase (p = .003) in peak power in the 20 km TT (354.27 ± 87.88 and 321.67 ± 63.65, for supplement and placebo trials, respectively) and a significant increase (p = .001) in time to fatigue in the HIEC test (0:19:49 ± 0:11:13 min and 0:14:33 ± 0:09:59 min, for supplement and placebo trials, respectively) with the test supplement compared to the placebo. With the test supplement, there was an average increase in TT peak power of 11% and an average increase in time to fatigue of 36.2% in the HIEC test compared to the placebo. There was no significant improvement in time to completion, average power, OMNI rating of perceived exertion, or VAS responses on perceived exertion in the TT test and no significant improvement in VAS measures of perceived exertion in the HIEC test. CONCLUSIONS: The combination of BCAAs, L-citrulline, and A-GPC used in this study improves cycling performance and may be useful for individuals seeking to improve athletic performance, particularly in disciplines requiring lower body muscular strength and endurance.


Assuntos
Desempenho Atlético , Citrulina , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Estudos Cross-Over , Citrulina/farmacologia , Glicerilfosforilcolina , Aminoácidos de Cadeia Ramificada , Desempenho Atlético/fisiologia , Suplementos Nutricionais , Fadiga , Método Duplo-Cego , Ciclismo/fisiologia
15.
Front Endocrinol (Lausanne) ; 14: 1148166, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950691

RESUMO

In this comprehensive review, we examine the main preclinical and clinical investigations assessing the effects of different forms of choline supplementation currently available, including choline alfoscerate (C8H20NO6P), also known as alpha-glycerophosphocholine (α-GPC, or GPC), choline bitartrate, lecithin, and citicoline, which are cholinergic compounds and precursors of acetylcholine. Extensively used as food supplements, they have been shown to represent an effective strategy for boosting memory and enhancing cognitive function.


Assuntos
Colina , Glicerilfosforilcolina , Colina/farmacologia , Glicerilfosforilcolina/farmacologia , Acetilcolina , Suplementos Nutricionais , Citidina Difosfato Colina
16.
Biomolecules ; 13(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36979406

RESUMO

The in vivo roles of lysophospholipase, which cleaves a fatty acyl ester of lysophospholipid, remained unclear. Recently, we have unraveled a previously unrecognized physiological role of the lysophospholipase PNPLA7, a member of the Ca2+-independent phospholipase A2 (iPLA2) family, as a key regulator of the production of glycerophosphocholine (GPC), a precursor of endogenous choline, whose methyl groups are preferentially fluxed into the methionine cycle in the liver. PNPLA7 deficiency in mice markedly decreases hepatic GPC, choline, and several metabolites related to choline/methionine metabolism, leading to various symptoms reminiscent of methionine shortage. Overall metabolic alterations in the liver of Pnpla7-null mice in vivo largely recapitulate those in methionine-deprived hepatocytes in vitro. Reduction of the methyl donor S-adenosylmethionine (SAM) after methionine deprivation decreases the methylation of the PNPLA7 gene promoter, relieves PNPLA7 expression, and thereby increases GPC and choline levels, likely as a compensatory adaptation. In line with the view that SAM prevents the development of liver cancer, the expression of PNPLA7, as well as several enzymes in the choline/methionine metabolism, is reduced in human hepatocellular carcinoma. These findings uncover an unexplored role of a lysophospholipase in hepatic phospholipid catabolism coupled with choline/methionine metabolism.


Assuntos
Colina , Lisofosfolipase , Animais , Humanos , Camundongos , Colina/metabolismo , Glicerilfosforilcolina/metabolismo , Fígado/metabolismo , Lisofosfolipase/metabolismo , Metionina/metabolismo , S-Adenosilmetionina/metabolismo
17.
Am J Physiol Endocrinol Metab ; 324(4): E339-E346, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791322

RESUMO

Many cells adapt to hyperosmolal conditions by upregulation of organic osmolytes to maintain cell function and integrity. Glycerophosphocholine (GPC), a recognized osmolyte in renal medullary cells, is the major phosphodiester (PDE) in human skeletal muscle, wherefore we hypothesized muscular GPC to be associated with surrogate parameters of fluid status and osmolality in healthy humans. The objective of this study was to investigate the relationship of muscular GPC with surrogate parameters of body fluid status and osmolality. We analyzed data of 30 healthy volunteers who underwent noninvasive 31P-magnetic resonance spectroscopy of either calf (n = 17) or thigh (n = 13) muscle. Therefore, we conducted correlation analyses between phosphor metabolites, and blood values depicting body fluid status and osmolality. Relevant parameters were further implemented in a multivariable regression model to evaluate if GPC concentrations can depict variations in fluid and electrolyte balance. Uric acid (0.437, P = 0.018) and urea (0.387, P = 0.035) were significantly correlated with GPC, which in case of uric acid was independent of sex. Considering sex, following multivariable regression reported GPC as suitable parameter to predict uric acid (R2 = 0.462, adjusted R2 = 0.421; P < 0.001). Our data indicate a connection between muscular GPC concentrations and uric acid, which is a marker of body fluid status, in healthy human subjects, suggesting that skeletal muscle might regulate GPC content in adaptation to changes in fluid status.NEW & NOTEWORTHY Using in vivo magnetic resonance spectroscopy, our study is the first one indicating fluid balance-dependent properties of glycerophosphocholine concentrations in human skeletal muscle. In vivo examination of GPC as organic osmolyte in human skeletal muscle marks a novel approach, which might give further insight on how water and electrolyte balance affect muscle tissue. Beside this main finding, glycerophosphocholine of both calf and thigh muscle correlated remarkably with blood laboratory parameters of lipid metabolism in our study population.


Assuntos
Glicerilfosforilcolina , Ácido Úrico , Humanos , Ácido Úrico/metabolismo , Glicerilfosforilcolina/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia , Espectroscopia de Ressonância Magnética , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo
18.
J Alzheimers Dis ; 92(1): 59-70, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36683513

RESUMO

BACKGROUND: Choline alphoscerate (alpha glyceryl phosphorylcholine, α-GPC) is a choline-containing phospholipid used as a medicine or nutraceutical to improve cognitive function impairment occurring in neurological conditions including adult-onset dementia disorders. Despite its 1985 marketing authorization, there are still discrepancies between countries regarding its approval as a prescription medicine and discussions about its effectiveness. OBJECTIVE: This study aimed to evaluate the efficacy of the α-GPC compound for treating cognitive impairment in patients with adult-onset neurological disorders. METHODS: Relevant studies were identified by searching PubMed, Web of Science, and Embase. Studies that evaluated the effects of α-GPC alone or in combination with other compounds on adult-onset cognitive impairment reporting cognition, function, and behavior were considered. We assessed the risk of bias of selected studies using the Cochrane risk of bias tool. RESULTS: A total of 1,326 studies and 300 full-text articles were screened. We included seven randomized controlled trials (RCTs) and one prospective cohort study that met our eligibility criteria. We found significant effects of α-GPC in combination with donepezil on cognition [4 RCTs, mean difference (MD):1.72, 95% confidence interval (CI): 0.20 to 3.25], functional outcomes [3 RCTs, MD:0.79, 95% CI: 0.34 to 1.23], and behavioral outcomes [4 RCTs; MD: -7.61, 95% CI: -10.31 to -4.91]. We also observed that patients who received α-GPC had significantly better cognition than those who received either placebo or other medications [MD: 3.50, 95% CI: 0.36 to 6.63]. CONCLUSION: α-GPC alone or in combination with donepezil improved cognition, behavior, and functional outcomes among patients with neurological conditions associated with cerebrovascular injury.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Humanos , Donepezila/uso terapêutico , Glicerilfosforilcolina/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Transtornos Cognitivos/tratamento farmacológico , Cognição , Ensaios Clínicos Controlados Aleatórios como Assunto
19.
Cell Rep ; 42(2): 111940, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36719796

RESUMO

Choline supplies methyl groups for regeneration of methionine and the methyl donor S-adenosylmethionine in the liver. Here, we report that the catabolism of membrane phosphatidylcholine (PC) into water-soluble glycerophosphocholine (GPC) by the phospholipase/lysophospholipase PNPLA8-PNPLA7 axis enables endogenous choline stored in hepatic PC to be utilized in methyl metabolism. PNPLA7-deficient mice show marked decreases in hepatic GPC, choline, and several metabolites related to the methionine cycle, accompanied by various signs of methionine insufficiency, including growth retardation, hypoglycemia, hypolipidemia, increased energy consumption, reduced adiposity, increased fibroblast growth factor 21 (FGF21), and an altered histone/DNA methylation landscape. Moreover, PNPLA8-deficient mice recapitulate most of these phenotypes. In contrast to wild-type mice fed a methionine/choline-deficient diet, both knockout strains display decreased hepatic triglyceride, likely via reductions of lipogenesis and GPC-derived glycerol flux. Collectively, our findings highlight the biological importance of phospholipid catabolism driven by PNPLA8/PNPLA7 in methyl group flux and triglyceride synthesis in the liver.


Assuntos
Fígado , Lisofosfolipase , Metionina , Fosfatidilcolinas , Animais , Camundongos , Colina/metabolismo , Glicerilfosforilcolina/metabolismo , Fígado/metabolismo , Metionina/metabolismo , Racemetionina/metabolismo , S-Adenosilmetionina/metabolismo , Triglicerídeos/metabolismo , Lisofosfolipase/genética , Lisofosfolipase/metabolismo , Fosfatidilcolinas/metabolismo
20.
Food Chem ; 401: 134109, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115228

RESUMO

Lysophospholipids which contain polyunsaturated fatty acids play a key role in food and cosmetic industries because of their bioactivity. Therefore, the formation of mono- and disubstituted phospholipids is quite interesting as they could be used for the formation of different natural liposomes. Using immobilized derivatives of lipases and phospholipases, the esterification of oleic acid with glycerophosphocholine (GPC) has been studied. Thus, derivatives were quite active in completely anhydrous media and in solvent-free reaction systems where the reaction takes place. CALB biocatalyst was able to successfully form oleoyl-LPC at 60 °C in the presence of 30 % butanone, where the synthesis rate was 100 times higher than in the absence of solvents at 40 °C. On the other hand, the best synthesis rate for dioleoyl-PC was achieved with immobilized Lecitase in a solvent-free process at 60 °C, an 83 % synthesis yield was achieved with an initial synthesis rate of 4.32 mg/mL × h × g.


Assuntos
Ácido Oleico , Fosfolipases , Enzimas Imobilizadas , Lipossomos , Lipase , Glicerilfosforilcolina , Solventes , Lisofosfolipídeos , Butanonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...